If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying x2 + 40x + -1700 = 0 Reorder the terms: -1700 + 40x + x2 = 0 Solving -1700 + 40x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '1700' to each side of the equation. -1700 + 40x + 1700 + x2 = 0 + 1700 Reorder the terms: -1700 + 1700 + 40x + x2 = 0 + 1700 Combine like terms: -1700 + 1700 = 0 0 + 40x + x2 = 0 + 1700 40x + x2 = 0 + 1700 Combine like terms: 0 + 1700 = 1700 40x + x2 = 1700 The x term is 40x. Take half its coefficient (20). Square it (400) and add it to both sides. Add '400' to each side of the equation. 40x + 400 + x2 = 1700 + 400 Reorder the terms: 400 + 40x + x2 = 1700 + 400 Combine like terms: 1700 + 400 = 2100 400 + 40x + x2 = 2100 Factor a perfect square on the left side: (x + 20)(x + 20) = 2100 Calculate the square root of the right side: 45.82575695 Break this problem into two subproblems by setting (x + 20) equal to 45.82575695 and -45.82575695.Subproblem 1
x + 20 = 45.82575695 Simplifying x + 20 = 45.82575695 Reorder the terms: 20 + x = 45.82575695 Solving 20 + x = 45.82575695 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20' to each side of the equation. 20 + -20 + x = 45.82575695 + -20 Combine like terms: 20 + -20 = 0 0 + x = 45.82575695 + -20 x = 45.82575695 + -20 Combine like terms: 45.82575695 + -20 = 25.82575695 x = 25.82575695 Simplifying x = 25.82575695Subproblem 2
x + 20 = -45.82575695 Simplifying x + 20 = -45.82575695 Reorder the terms: 20 + x = -45.82575695 Solving 20 + x = -45.82575695 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20' to each side of the equation. 20 + -20 + x = -45.82575695 + -20 Combine like terms: 20 + -20 = 0 0 + x = -45.82575695 + -20 x = -45.82575695 + -20 Combine like terms: -45.82575695 + -20 = -65.82575695 x = -65.82575695 Simplifying x = -65.82575695Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.82575695, -65.82575695}
| 5g-16g=-12 | | 3r-27/6 | | 0.2x-0.1(16-5x)=-0.6(x-6) | | x^2-8x+45= | | 6*K^2-K-12=0 | | 42.2=34.6+4h | | x^2+y^2-4x+2y-44=0 | | 112-2x=68 | | 6k+24/k+4 | | 8-8t=21t-17 | | x^2-8x+45=0 | | (5x+3)+2=27 | | R=p/1-q | | 3(x-y)-2(x+y)= | | 2x+5x+5y= | | 9x+4y=-20 | | 6+(4x)=x+12 | | 6=2x-3y | | 5c^2-20c=0 | | 7/(y+5)=(-7/2y+10)+2 | | 2(9+x)=56 | | x^2-12x^2+36x=0 | | k-8=10 | | n^2-14*n-72=0 | | (7b-4)=-4 | | -x=2/3x+10 | | 0/295 | | (-5y+6y^2-2)/(1+2y) | | y=40x-19x | | 3x+5y=1025 | | 21q-11=210.5 | | 2x^5-3x^3-x=1 |